Sains Malaysiana 52(7)(2023): 2021-2035
http://doi.org/10.17576/jsm-2023-5207-11
Adsorption of Ciprofloxacin
using Composite Film from PVA, Agarose and Maltodextrin
(Penjerapan Ciprofloksacin menggunakan Filem Komposit daripada PVA,
Agarosa dan Maltodekstrin)
BICH
NGOC HOANG1,2, HUONG DIEU TRAN3,4, THI CAM QUYEN
NGO1,2, NGUYEN THI NHU DUNG5 & LONG GIANG BACH1,2,*
1Institute
of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
2Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
3Faculty
of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268
Ly Thuong Kiet, District
10, Ho Chi Minh City, Vietnam
4Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho
Chi Minh City, Vietnam
5Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE),
Vietnam
Diserahkan: 16 Disember 2022/Diterima: 19 Jun 2023
Abstract
Antibiotic
resistance is one of the most alarming problems today. Therefore, composite
membranes have been widely applied for the removal of antibiotics from water.
PVA/Agarose/Maltodextrin films have been synthesized
by casting with various component ratios. They were evaluated for
characteristics through moisture, solubility, expansion, and BET results. The
results showed that PVA/Agarose/Maltodextrin films
exhibited the best viability in the aquatic environment through low solubility
(68.88% ± 0.03), high swelling (431.77% ± 5.89) and pore volume (0.034969
cm³/g). The adsorption capacity of PVA/Agarose/Maltodextrin was tested for several antibiotics such as Ciprofloxacin, Tetracycline,
Oxy-Tetracycline, and Chloramphenicol. The results showed that Ciprofloxacin
was removed by the PVA/Agarose/Maltodextrin films
better than other antibiotics. The highest antibiotic adsorption was obtained
at 20 min, temperature of 30 °C, dosage of 2 g/L, pH 6, and antibiotic
concentration of 40 mg/L. Ciprofloxacin adsorption
was predicted through adsorption kinetic and isothermal models. The
compatibility of the Pseudo First Order kinetic and Dubinin-Radushkevich isothermal has shown that adsorption takes place according to a physical
adsorption mechanism with electrostatic interactions on the surface of the
material. The maximum adsorption capacity recorded at 4.48 mg/g based on the Dubinin-Radushkevich isothermal.
Keywords: Agarose; Ciprofloxacin; composite
membrane; Maltodextrin; PVA
Abstrak
Rintangan antibiotik ialah salah satu
masalah yang paling membimbangkan hari ini. Oleh itu, membran komposit telah
digunakan secara meluas untuk penyingkiran antibiotik daripada air. Filem
PVA/Agarosa/Maltodekstrin telah disintesis dengan tuangan dengan pelbagai
nisbah komponen. Ia dinilai untuk ciri melalui kelembapan, keterlarutan, pengembangan dan keputusan
BET. Keputusan menunjukkan bahawa filem PVA/Agarosa/Maltodekstrin mempamerkan
daya maju terbaik dalam persekitaran akuatik melalui keterlarutan rendah
(68.88% ± 0.03), bengkak tinggi (431.77% ± 5.89) dan isi padu liang
(0.034969 cm³/g). Kapasiti penjerapan PVA/Agarosa/Maltodekstrin telah diuji
untuk beberapa antibiotik seperti Ciprofloksacin, Tetracycline, Oxy-Tetracycline
dan Chloramphenicol. Keputusan menunjukkan bahawa Ciprofloksacin telah
dikeluarkan oleh filem PVA/Agarose/Maltodekstrin lebih baik daripada antibiotik
lain. Penjerapan antibiotik tertinggi diperoleh pada 20 minit, suhu 30 °C, dos
2 g/L, pH 6 dan kepekatan antibiotik 40 mg/L. Penjerapan Ciprofloksacin telah
diramalkan melalui model kinetik dan isoterma penjerapan. Keserasian kinetik
Pseudo First Order dan isoterma Dubinin-Radushkevich telah menunjukkan bahawa
penjerapan berlaku mengikut mekanisme penjerapan fizikal dengan interaksi
elektrostatik pada permukaan bahan. Kapasiti penjerapan maksimum direkodkan
pada 4.48 mg/g berdasarkan isoterma Dubinin-Radushkevich.
Kata kunci: Agarose; Ciprofloksacin; membran komposit;
Maltodekstrin; PVA
RUJUKAN
Abd El-Monaem,
E.M., Eltaweil, A.S., M. Elshishini, H., Mohamed Hosny, Abou Alsoaud, M.M.,
Attia, N.F., El-Subruiti, G.M. & Omer, A.M. 2022a. Sustainable adsorptive
removal of antibiotic residues by chitosan composites: An insight into current
developments and future recommendations. Arabian Journal of Chemistry 15(5): 103743. https://doi.org/10.1016/j.arabjc.2022.103743
Abd
El-Monaem, E.M., Omer, A.M., Khalifa, R.E. & Eltaweil, A.S. 2022b.
Floatable cellulose acetate beads embedded with flower-like Zwitterionic binary
MOF/PDA for efficient removal of tetracycline. Journal of Colloid and
Interface Science 620(August): 333-345.
https://doi.org/10.1016/j.jcis.2022.04.010
Abdeen,
Z., Mohammad, S.G. & Mahmoud, M.S. 2015. Adsorption of Mn (II) ion on
polyvinyl alcohol/chitosan dry blending from aqueous solution. Environmental
Nanotechnology, Monitoring & Management 3: 1-9.
https://doi.org/10.1016/j.enmm.2014.10.001
Aslam,
M., Kalyar, M.A. & Raza, Z.A. 2018. Polyvinyl alcohol: A review of research
status and use of polyvinyl alcohol based nanocomposites. Polymer
Engineering & Science 58(12): 2119-2132.
https://doi.org/10.1002/pen.24855
Asrofi,
M., Dwilaksana, D., Abral, H. & Fajrul, R. 2019. Tensile, thermal and
moisture absorption properties of polyvinyl alcohol (PVA)/Bengkuang (Pachyrhizuserosus)
starch blend films. Material Science Research India 16(1): 70-75.
https://doi.org/10.13005/msri/160110
Bailey,
E.J. & Winey, K.I. 2020. Dynamics of polymer segments, polymer chains, and
nanoparticles in polymer nanocomposite melts: A review. Progress in Polymer
Science 105(June): 101242.
https://doi.org/10.1016/j.progpolymsci.2020.101242
Boczkaj,
G. & Fernandes, A. 2017. Wastewater treatment by means of advanced
oxidation processes at basic pH conditions : A review. Chemical
Engineering Journal https://doi.org/10.1016/j.cej.2017.03.084
Chang,
Q., Ali, A., Su, J., Wen, Q., Bai, Y., Gao, Z. & Xiong, R. 2021. Efficient
removal of nitrate, manganese, and tetracycline by a polyvinyl alcohol/sodium
alginate with sponge cube immobilized bioreactor. Bioresource Technology 331(July): 125065. https://doi.org/10.1016/j.biortech.2021.125065
Chen,
C., Tang, Z., Ma, Y., Qiu, W., Yang, F., Mei, J. & Jing, X. 2018.
Physicochemical, microstructural, antioxidant and antimicrobial properties of
active packaging films based on poly(vinyl alcohol)/clay nanocomposite
incorporated with tea polyphenols. Progress in Organic Coatings 123(October): 176-184. https://doi.org/10.1016/j.porgcoat.2018.07.001
Dhand,
V., Mittal, G., Rhee, K.Y., Park, S-J. & Hui, D. 2015. A short review on
basalt fiber reinforced polymer composites. Composites Part B: Engineering 73(May): 166-180. https://doi.org/10.1016/j.compositesb.2014.12.011
Dieu,
T.L. & Hoang, T.V. 2021. Synthesis of graphene oxide/ polyvinyl alcohol
(GO/PVA) composite film as an adsorbent. Vietnam Journal of Catalysis and
Adsorption 10(3): 6-10. https://doi.org/10.51316/jca.2021.042
Ding,
C. & He, J. 2010. Effect of antibiotics in the environment on microbial
populations. Applied Microbiology and Biotechnology 87(3): 925-941.
https://doi.org/10.1007/s00253-010-2649-5
Falath,
W., Sabir, A. & Jacob, K.I. 2017. Novel reverse osmosis membranes composed
of modified PVA/gum arabic conjugates: Biofouling mitigation and chlorine
resistance enhancement. Carbohydrate Polymers 155(January): 28-39.
https://doi.org/10.1016/j.carbpol.2016.08.058
Figueiredo,
K.C.S., Alves, T.L.M. & Borges, C.P. 2009. Poly(vinyl alcohol) films
crosslinked by glutaraldehyde under mild conditions. Journal of Applied
Polymer Science 111(6): 3074-3080. https://doi.org/10.1002/app.29263
Fu,
S., Sun, Z., Huang, P., Li, Y. & Hu, N. 2019. Some basic aspects of polymer
nanocomposites: A critical review. Nano Materials Science 1(1): 2-30.
https://doi.org/10.1016/j.nanoms.2019.02.006
Gao,
S., Zhu, Y., Gong, Y., Wang, Z., Fang, W. & Jin, J. 2019. Ultrathin
polyamide nanofiltration membrane fabricated on brush-painted single-walled
carbon nanotube network support for ion sieving. ACS Nano 13(5):
5278-5290. https://doi.org/10.1021/acsnano.8b09761
Ge,
J.C., Wu, G., Yoon, S.K., Kim, M.S. & Choi, N.J. 2021. Study on the
preparation and lipophilic properties of polyvinyl alcohol (PVA) nanofiber
membranes via green electrospinning. Nanomaterials 11(10): 2514.
https://doi.org/10.3390/nano11102514
Ghaffari,
H.R., Pasalari, H., Tajvar, A., Dindarloo, K., BakGoudarzi, B., Alipour, V.
& Ghanbarneajd, A. 2017. Linear and nonlinear two-parameter adsorption
isotherm modeling: A case-study. The International Journal of Engineering
and Science https://doi.org/10.9790/1813-0609010111
Ghazalian,
M., Afshar, S., Rostami, A., Rashedi, S. & Bahrami, S.H. 2022. Fabrication
and characterization of chitosan-polycaprolactone core-shell nanofibers
containing tetracycline hydrochloride. Colloids and Surfaces A:
Physicochemical and Engineering Aspects 636(March): 128163.
https://doi.org/10.1016/j.colsurfa.2021.128163
Ghemati,
Dj. & Aliouche, Dj. 2014. Dye adsorption behavior of polyvinyl
alcohol/glutaraldehyde/β-cyclodextrin polymer membranes. Journal of
Applied Spectroscopy 81(2): 257-263.
https://doi.org/10.1007/s10812-014-9919-4
Hami,
H., Abbas, R., Jasim, A., Abdul Abass, D., A. Abed, M. & A. Maryoosh, A.
2019. Kinetics study of removal doxycycline drug from aqueous solution using
aluminum oxide surface. Egyptian Journal of Chemistry 62(Special Issue
Part 1) Innovation in Chemistry: 91-101.
https://doi.org/10.21608/ejchem.2019.5499.1483
Hamoudi,
S.A., Hamdi, B. & Brendlé, J. 2021. Tetracycline removal from water by
adsorption on geomaterial, activated carbon and clay adsorbents. Ecological
Chemistry and Engineering S 28(3): 303-328.
https://doi.org/10.2478/eces-2021-0021
Hoang,
B.N., Nguyen, T.T., Nguyen, D.V. & Tan, L.V. 2021. Removal of crystal
violet from aqueous solution using environment-friendly and water-resistance
membrane based on Polyvinyl/Agar/Maltodextrin. Materials Today: Proceedings 38: 3046-3052. https://doi.org/10.1016/j.matpr.2020.09.391.
Hoang,
B.N., Nguyen, T.T., Bui, Q.P.T., Bach, L.G., Vo, D‐V.N., Trinh, C.D.,
Bui, X‐T. & Nguyen, T.D. 2020. Enhanced selective adsorption of
cation organic dyes on polyvinyl alcohol/agar/maltodextrin
water‐resistance biomembrane. Journal of Applied Polymer Science 137(30): 48904. https://doi.org/10.1002/app.48904
Janani,
B., Okla, M.K., Abdel-Maksoud, M.A., AbdElgawad, H., Thomas, A.M., Raju, L.L.,
Al-Qahtani, W.H. & Sudheer Khan, S. 2022. CuO loaded ZnS nanoflower
entrapped on PVA-Chitosan matrix for boosted visible light photocatalysis for
tetracycline degradation and anti-bacterial application. Journal of
Environmental Management 306(March): 114396.
https://doi.org/10.1016/j.jenvman.2021.114396
Jipa,
I.M., Stoica-Guzun, A. & Stroescu, M. 2012. Controlled release of sorbic
acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT 47(2): 400-406. https://doi.org/10.1016/j.lwt.2012.01.039
Khandaker,
S., Toyohara, Y., Kamida, S. & Kuba, T. 2018. Adsorptive removal of cesium
from aqueous solution using oxidized bamboo charcoal. Water Resources and
Industry 19(June): 35-46. https://doi.org/10.1016/j.wri.2018.01.001
Kosmulski,
M. 2020. The pH dependent surface charging and points of zero charge. VIII.
update. Advances in Colloid and Interface Science 275(January): 102064.
https://doi.org/10.1016/j.cis.2019.102064
Kumar,
K., Gupta, S.C., Chander, Y. & Singh, A.K. 2005. Antibiotic use in
agriculture and its impact on the terrestrial environment. Advanced in
Egronomy 87: 1-54. https://doi.org/10.1016/S0065-2113(05)87001-4
Liao,
Q., Rong, H., Zhao, M., Luo, H., Chu, Z. & Wang, R. 2022. Strong adsorption
properties and mechanism of action with regard to tetracycline adsorption of
double-network polyvinyl alcohol-copper alginate gel beads. Journal of
Hazardous Materials 422(January): 126863.
https://doi.org/10.1016/j.jhazmat.2021.126863
Lu,
T., Xu, X., Liu, X. & Sun, T. 2017. Super hydrophilic PVDF based composite
membrane for efficient separation of tetracycline. Chemical Engineering
Journal 308(January): 151-159. https://doi.org/10.1016/j.cej.2016.09.009
Lulijwa,
R., Rupia, E.J. & Alfaro, A.C. 2020. Antibiotic use in aquaculture,
policies and regulation, health and environmental risks: A review of the top 15
major producers. Reviews in Aquaculture 12(2): 640-663.
https://doi.org/10.1111/raq.12344.
Madera-Santana,
T.J., Freile-Pelegrín, Y. & Azamar-Barrios, J.A. 2014. Physicochemical and
morphological properties of plasticized poly(vinyl alcohol)–agar biodegradable
films. International Journal of Biological Macromolecules 69(August):
176-184. https://doi.org/10.1016/j.ijbiomac.2014.05.044
Mahdavinia,
G.R., Massoudi, A., Baghban, A. & Shokri, E. 2014. Study of adsorption of
cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. Journal
of Environmental Chemical Engineering 2(3): 1578-1587.
https://doi.org/10.1016/j.jece.2014.05.020
Maqsoudlou,
A., Mahoonak, A.S., Mohebodini, H. & Koushki, V. 2020. Stability and
structural properties of bee pollen protein hydrolysate microencapsulated using
maltodextrin and whey protein concentrate. Heliyon 6(5): e03731.
https://doi.org/10.1016/j.heliyon.2020.e03731
Mirasgedis,
S., Hontou, V., Georgopoulou, E., Sarafidis, Y., Gakis, N., Lalas, D.P.,
Loukatos, A., Gargoulas, N., Mentzis, A., Economidis, D., Triantafilopoulos, T., Korizi, K. & Mavrotas, G. 2008. Environmental damage costs from airborne
pollution of industrial activities in the Greater Athens, Greece area and the
resulting benefits from the introduction of BAT. Environmental Impact
Assessment Review 28(1): 39-56. https://doi.org/10.1016/j.eiar.2007.03.006
Mishra,
S., Tiwary, D., Ohri, A. & Agnihotri, A.K. 2019. Impact of municipal solid
waste landfill leachate on groundwater quality in Varanasi, India. Groundwater
for Sustainable Development 9(October): 100230.
https://doi.org/10.1016/j.gsd.2019.100230
Nawar,
A.M. & El-Mahalawy, A.M. 2020. Heterostructure device based on brilliant
green nanoparticles–PVA/p-Si interface for analog–digital converting
dual-functional sensor applications. Journal of Materials Science: Materials
in Electronics 31(4): 3256-3273. https://doi.org/10.1007/s10854-020-02874-1
Nguyen,
T.T., Hoang, B.N., Tran, T.V., Nguyen, D.V., Nguyen, T.D. & Vo, D-V.N.
2021. Agar/maltodextrin/poly(vinyl alcohol) walled montmorillonite composites
for removal of methylene blue from aqueous solutions. Surfaces and
Interfaces 26(October): 101410.
https://doi.org/10.1016/j.surfin.2021.101410
Ololade,
O.O., Mavimbela, S., Oke, S.A. & Makhadi, R. 2019. Impact of leachate from
northern landfill site in bloemfontein on water and soil quality: Implications
for water and food security. Sustainability 11(15): 4238.
https://doi.org/10.3390/su11154238
Przydatek,
G. & Kanownik, W. 2019. Impact of small municipal solid waste landfill on
groundwater quality. Environmental Monitoring and Assessment 191(3): 169.
https://doi.org/10.1007/s10661-019-7279-5
Ramakrishna,
S., Mayer, J., Wintermantel, E. & Leong, K.W. 2001. Biomedical applications
of polymer-composite materials: A review. Composites Science and Technology 61(9): 1189-1224. https://doi.org/10.1016/S0266-3538(00)00241-4
Rodríguez-San-Miguel,
D. & Zamora, F. 2019. Processing of covalent organic frameworks: An
ingredient for a material to succeed. Chemical Society Reviews 48(16):
4375-4386. https://doi.org/10.1039/C9CS00258H
Rynkowska,
E., Fatyeyeva, K., Marais, S., Kujawa, J. & Kujawski, W. 2019. Chemically
and thermally crosslinked PVA-based membranes: Effect on swelling and transport
behavior. Polymers 11(11): 1799. https://doi.org/10.3390/polym11111799
Sabarish,
R. & Unnikrishnan, G. 2018. Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5
zeolite biocomposite membranes for dye adsorption applications. Carbohydrate
Polymers 199(November): 129-140.
https://doi.org/10.1016/j.carbpol.2018.06.123
Saha,
N., Volpe, M., Fiori, L., Volpe, R., Messineo, A. & Toufiq Reza, M. 2020.
Cationic dye adsorption on hydrochars of winery and citrus juice industries
residues: Performance, mechanism, and thermodynamics. Energies 13(18):
4686. https://doi.org/10.3390/en13184686
Shamsuri,
A.A. & Daik, R. 2013. Utilization of an ionic liquid/urea mixture as a
physical coupling agent for agarose/talc composite films. Materials 6(2): 682-698. https://doi.org/10.3390/ma6020682
Sritham,
E. & Gunasekaran, S. 2017. FTIR spectroscopic evaluation of
sucrose-maltodextrin-sodium citrate bioglass. Food Hydrocolloids 70(September): 371-382. https://doi.org/10.1016/j.foodhyd.2017.04.023
Thuan,
V.T., Bich, N.H., Hien, T.T., Nhan, P.T.N., Van, T.T.H., Hai, N.D., Cao, V.D.,
Nguyen, T.D. & Bach, L.G. 2019. Activated carbon via. pyropysis of tea
industry waste biochar with KOH activation: Preparation and characterization. Journal
of Engineering and Applied Sciences 14(6): 1755-1759.
https://doi.org/10.36478/jeasci.2019.1755.1759
Tian,
H., Yan, J., Rajulu, A.V., Xiang, A. & Luo, X. 2017. Fabrication and
properties of polyvinyl alcohol/starch blend films: Effect of composition and
humidity. International Journal of Biological Macromolecules 96:
518-523. https://doi.org/10.1016/j.ijbiomac.2016.12.067
Tran,
H.N., You, S-J., Hosseini-Bandegharaei, A. & Chao, H-P. 2017. Mistakes and
inconsistencies regarding adsorption of contaminants from aqueous solutions: A
critical review. Water Research 120(September): 88-116.
https://doi.org/10.1016/j.watres.2017.04.014
Uppuluri,
V.N.V.A. & Shanmugarajan, T.S. 2019. Icariin-loaded polyvinyl alcohol/agar
hydrogel: Development, characterization, and in vivo evaluation in a
full-thickness burn model. The International Journal of Lower Extremity
Wounds 18(3): 323-335. https://doi.org/10.1177/1534734619849982
Wang,
W., Dai, Y., Zhang, H., Zhang, R., Hou, H. & Dong, H. 2018. Effects of
hydrophobic agents on the physicochemical properties of edible
agar/maltodextrin films. Food Hydrocolloids https://doi.org/10.1016/j.foodhyd.2018.10.008
Wu,
M., Zhao, S., Jing, R., Shao, Y., Liu, X., Lv, F., Hu, X., Zhang, Q., Meng, Z.
& Liu, A. 2019. Competitive adsorption of antibiotic tetracycline and
ciprofloxacin on montmorillonite. Applied Clay Science 180(November):
105175. https://doi.org/10.1016/j.clay.2019.105175
Yan,
C., Fan, L., Chen, Y. & Xiong, Y. 2020. Effective adsorption of
oxytetracycline from aqueous solution by lanthanum modified magnetic humic
acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 602(October): 125135. https://doi.org/10.1016/j.colsurfa.2020.125135
Yang,
W., Fortunati, E., Bertoglio, F., Owczarek, J.S., Bruni, G., Kozanecki, M.,
Kenny, J.M., Torre, L., Visai, L. & Puglia, D. 2018. Polyvinyl
alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial
properties induced by lignin nanoparticles. Carbohydrate Polymers.
https://doi.org/10.1016/j.carbpol.2017.10.084
Yang,
X., Zhu, Z., Liu, Q., Chen, X. & Ma, M. 2008. Effects of PVA, agar
contents, and irradiation doses on properties of PVA/Ws-chitosan/glycerol
hydrogels made by γ-irradiation followed by freeze-thawing. Radiation
Physics and Chemistry 77(8): 954-960.
https://doi.org/10.1016/j.radphyschem.2008.02.011
Yazidi,
A., Atrous, M., Soetaredjo, F.E., Sellaoui, L., Ismadji, S., Erto, A., Bonilla-Petriciolet,
A., Dotto, G.L. & Ben Lamine, A. 2020. Adsorption of amoxicillin and
tetracycline on activated carbon prepared from durian shell in single and
binary systems: Experimental study and modeling analysis. Chemical
Engineering Journal 379(January): 122320.
https://doi.org/10.1016/j.cej.2019.122320
Zhao,
Y., Li, X., Shen, J., Gao, C. & Van der Bruggen, B. 2020. The potential of
kevlar aramid nanofiber composite membranes. Journal of Materials Chemistry
A 8(16): 7548-7568. https://doi.org/10.1039/D0TA01654C
*Pengarang untuk surat-menyurat; email: blgiang@ntt.edu.vn
|